Motivations and aims

- Equity and Sustainability

Our socio-economic system will experience deep changes that have to be investigated in their systemic interactions (co-evolution of environmental, social and economic factors).

Twofold purpose:

- To propose a model able to evaluate the impact of energy transition policies and initiatives (e.g. SEN, 2017) on macroeconomic and social indicators and vice versa.
- To investigate whether policies that tend to increase equity can be complementary to the achievement of environmental and energy targets.

RQ: how does the implementation of low-carbon policies impact current trends toward industrial automation and technological unemployment?
Motivations and aims

- Equity and Sustainability

- **Societal Transition** ➞ Our socio-economic system will experience deep changes that have to be investigated in their systemic interactions (co-evolution of environmental, social and economic factor).
Motivations and aims

- Equity and Sustainability
- **Societal Transition** ⟷ Our socio-economic system will experience deep changes that have to be investigated in their systemic interactions (co-evolution of environmental, social and economic factor).

- Twofold purpose:

 ⟷ To propose a model able to evaluate the impact of energy transition policies and initiatives (e.g. SEN, 2017) on macroeconomic and social indicators and *vice versa*.

RQ: how does the implementation of low-carbon policies impact current trends toward industrial automation and technological unemployment?
Motivations and aims

- **Equity and Sustainability**

- **Societal Transition** → Our socio-economic system will experience deep changes that have to be investigated in their systemic interactions (co-evolution of environmental, social and economic factor).

- **Twofold purpose:**

 → To propose a model able to evaluate the impact of energy transition policies and initiatives (e.g. SEN, 2017) on macroeconomic and social indicators and *vice versa*.

 → To investigate whether policies that tend to increase equity can be complementary to the achievement of environmental and energy targets.
Motivations and aims

- Equity and Sustainability

- Societal Transition \(\Rightarrow\) Our socio-economic system will experience deep changes that have to be investigated in their systemic interactions (co-evolution of environmental, social and economic factor).

- Twofold purpose:

 \(\Rightarrow\) To propose a model able to evaluate the impact of energy transition policies and initiatives (e.g. SEN, 2017) on macroeconomic and social indicators and vice versa.

 \(\Rightarrow\) To investigate whether policies that tend to increase equity can be complementary to the achievement of environmental and energy targets.

RQ: how does the implementation of low-carbon policies impact current trends toward industrial automation and technological unemployment?
What we found

- In the actual context of transformation (e.g. Industry 4.0), energy policies inspired by *green growth* could provoke a further increase in inequality.
What we found

- In the actual context of transformation (e.g. Industry 4.0), energy policies inspired by *green growth* could provoke a further increase in inequality.

- **Growth and inequality increases** may contribute to the failure to meet EU emissions target.
What we found

- In the actual context of transformation (e.g. Industry 4.0), energy policies inspired by *green growth* could provoke a further increase in inequality.

- **Growth and inequality increases** may contribute to the failure to meet EU emissions target.

- The introduction of policies directly aimed at improving equity and sustaining employment can instead help to meet EU targets.
What we found

- In the actual context of transformation (e.g. Industry 4.0), energy policies inspired by *green growth* could provoke a further increase in inequality.

- **Growth and inequality increases** may contribute to the failure to meet EU emissions target.

- The introduction of policies directly aimed at **improving equity and sustaining employment** can instead help to meet EU targets.

- **No win-to-win strategy** \implies there are still several *tradeoffs* between economic, social and environmental indicators.
Ecological Macroeconomics

The so-called Ecological Macroeconomics is characterized by three main factors (Hardt and O’Neill, 2017):
The so-called **Ecological Macroeconomics** is characterized by three main factors (Hardt and O’Neill, 2017):

i. Managing without growth (Daly, 1991; Victor, 2008; Jackson, 2009; Kallis et al., 2013; Jackson et al., 2016);
Ecological Macroeconomics

The so-called Ecological Macroeconomics is characterized by three main factors (Hardt and O’Neill, 2017):

i. Managing without growth (Daly, 1991; Victor, 2008; Jackson, 2009; Kallis et al., 2013; Jackson et al., 2016);

ii. Representing the dependence of the macroeconomy on the natural environment (e.g. rebound effect) (Dafermos et al., 2017; Røpke, 2016);
The so-called **Ecological Macroeconomics** is characterized by three main factors (Hardt and O’Neill, 2017):

i. Managing without growth (Daly, 1991; Victor, 2008; Jackson, 2009; Kallis et al., 2013; Jackson et al., 2016);

ii. Representing the dependence of the macroeconomy on the natural environment (e.g. rebound effect) (Dafermos et al., 2017; Røpke, 2016);

iii. Combining Post-Keynesian Macroeconomics with Ecological Economics (Gowdy, 1991; Kronenberg, 2010; Taylor et al., 2016; Rezai and Stagl, 2016)
Ecological Macroeconomics

The so-called Ecological Macroeconomics is characterized by three main factors (Hardt and O’Neill, 2017):

i. Managing without growth (Daly, 1991; Victor, 2008; Jackson, 2009; Kallis et al., 2013; Jackson et al., 2016);

ii. Representing the dependence of the macroeconomy on the natural environment (e.g. rebound effect) (Dafermos et al., 2017; Røpke, 2016);

iii. Combining Post-Keynesian Macroeconomics with Ecological Economics (Gowdy, 1991; Kronenberg, 2010; Taylor et al., 2016; Rezai and Stagl, 2016)

Keynesian approach \implies Demand driven model.
Theoretical starting point

Focus on issues still relatively unexplored in this literature:
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

- Local Economy
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

- **Local Economy**
- **Ageing**

Ecological macroeconomic modelling to better address these issues and the challenges they represent. This means to include a multiplicity of feedbacks and interactions. System dynamics \Rightarrow complexity. This approach has been developed since the seminal work by Meadows et al. (1972), *The Limits to Growth*.
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

- Local Economy
- Ageing
- International Trade
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

- Local Economy
- Ageing
- International Trade
- Labour Market Institutions
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

- **Local Economy**
- **Ageing**
- **International Trade**
- **Labour Market Institutions**
- **Energy Mix**
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

- **Local Economy**
- **Ageing**
- **International Trade**
- **Labour Market Institutions**
- **Energy Mix**

Ecological macroeconomic modelling to better address these issues and the challenges they represent.

This means to include a multiplicity of feedbacks and interactions.
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

- Local Economy
- Ageing
- International Trade
- Labour Market Institutions
- Energy Mix

Ecological macroeconomic modelling to better address these issues and the challenges they represent.

This means to include a multiplicity of feedbacks and interactions.
System dynamics \(\Rightarrow\) complexity.
Theoretical starting point

Focus on issues still relatively unexplored in this literature:

▶ Local Economy
▶ Ageing
▶ International Trade
▶ Labour Market Institutions
▶ Energy Mix

Ecological macroeconomic modelling to better address these issues and the challenges they represent.

This means to include a multiplicity of feedbacks and interactions.

System dynamics \Rightarrow complexity.

This approach has been developed since the seminal work by Meadows et al. (1972), *The Limits to Growth*.
A macro view of the model
Analytical Framework

Distribution and aggregate demand

- Pensioners, employees and unemployed people get a specific income.
- Distributed profits allow for an investigation of the functional distribution and its influence on aggregate demand:
Analytical Framework

Distribution and aggregate demand

- Pensioners, employees and unemployed people get a specific income.
- Distributed profits allow for an investigation of the functional distribution and its influence on aggregate demand:
 - From gross income and specific taxation \rightarrow disposable income (YD).
Analytical Framework

Distribution and aggregate demand

- Pensioners, employees and unemployed people get a specific income.
- Distributed profits allow for an investigation of the functional distribution and its influence on aggregate demand:
 - From gross income and specific taxation \(\Rightarrow \) disposable income \((YD)\).
 - From \(YD \) and the propensity to consume out of income and wealth \(\Rightarrow \) consumption expenditure.
Analytical Framework

Distribution and aggregate demand

- Pensioners, employees and unemployed people get a specific income.
- Distributed profits allow for an investigation of the functional distribution and its influence on aggregate demand:
 - From gross income and specific taxation \Rightarrow disposable income (Y_D).
 - From Y_D and the propensity to consume out of income and wealth \Rightarrow consumption expenditure.
 - Household preferences (affected by groups composition) determine the share of expenditure in each final sector.

- Households can also invest in energy saving by using their own wealth.
Analytical Framework

Distribution and aggregate demand

- Pensioners, employees and unemployed people get a specific income.

- Distributed profits allow for an investigation of the **functional distribution** and its influence on aggregate demand:
 - From gross income and specific taxation \Rightarrow disposable income (Y_D).
 - From Y_D and the propensity to consume out of income and wealth \Rightarrow consumption expenditure.
 - Household preferences (affected by groups composition) determine the share of expenditure in each final sector.

- Households can also invest in energy saving by using their own wealth.
Capital Accumulation

4 sectors: standard goods (s), social and local goods (s), thermoelectric energy (th) and renewable energy (ren).
Capital Accumulation

4 sectors: standard goods \((s)\), social and local goods \((s)\), thermoelectric energy \((th)\) and renewable energy \((ren)\).

Potential sectorial output \((z = c, s, th)\):

\[
y_{fc,z} = \epsilon_z k_z. \tag{1}
\]

Capacity utilization

\[
u_z = \frac{y_z}{y_{fc,z}}. \tag{2}
\]
Capital Accumulation

4 sectors: standard goods (s), social and local goods (s), thermoelectric energy (th) and renewable energy (ren).

Potential sectorial output ($z = c, s, th$):

$$y_{fc,z} = \epsilon_z k_z. \quad (1)$$

Capacity utilization

$$u_z = \frac{y_z}{y_{fc,z}}. \quad (2)$$

Desired growth of capital:

$$g_{k_z,t} = \gamma_1 (u_{z,t-1} - u_z^T) + \gamma_2 r_{z,t_1}, \quad (3)$$

where r_z is the cash flow to capital ratio.
Capital Accumulation

4 sectors: standard goods (s), social and local goods (s), thermoelectric energy (th) and renewable energy (ren).

Potential sectorial output ($z = c, s, th$):

$$y_{fc,z} = \epsilon_z k_z.$$ \hspace{1cm} (1)

Capacity utilization

$$u_z = \frac{y_z}{y_{fc,z}}.$$ \hspace{1cm} (2)

Desired growth of capital:

$$g_{k_z,t} = \gamma_1 (u_{z,t-1} - u_z^T) + \gamma_2 r_{z,t_1},$$ \hspace{1cm} (3)

where r_z is the cash flow to capital ratio. Thus,

$$i_z = \max\{g_{k_z,t} + \delta_z, 0\} k_z.$$ \hspace{1cm} (4)
Capital Accumulation

4 sectors: standard goods \((s)\), social and local goods \((s)\), thermoelectric energy \((th)\) and renewable energy \((ren)\).

Potential sectorial output \((z = c, s, th)\):

\[
y_{fc,z} = \epsilon_z k_z. \tag{1}
\]

Capacity utilization

\[
u_z = \frac{y_z}{y_{fc,z}}. \tag{2}
\]

Desired growth of capital:

\[
g_{k_z,t} = \gamma_1(u_{z,t-1} - u_z^T) + \gamma_2 r_{z,t_1}, \tag{3}
\]

where \(r_z\) is the cash flow to capital ratio. Thus,

\[
i_z = \max\{g_{k_z,t} + \delta_z, 0\} k_z. \tag{4}
\]

and

\[
k_{z,t+1} = i_{z,t} + (1 - \delta_z) k_{z,t}. \tag{5}
\]
Labour productivity and energy efficiency

- Labour productivity (λ) depends on: physical capital growth rate (+), public and private investment in automation (+), wage (+) (efficiency wage), working time (−), and an exogenous positive rate (in the standard goods sector about 0.2% per year).

- Energy efficiency depends on: public and private specific investments (+), rate of growth of physical capital (+), and relatively price of energy (+).

- Improvements in energy efficiency become always more difficult = more expensive (decreasing marginal productivity).
Labour productivity and energy efficiency

- Labour productivity (λ) depends on: physical capital growth rate (+), public and private investment in automation (+), wage (+) (efficiency wage), working time (−), and an exogenous positive rate (in the standard goods sector about 0.2% per year).

- Labour productivity directly affects employment, wage, mark-up and prices (changing unit costs).
Labour productivity and energy efficiency

- Labour productivity (λ) depends on: physical capital growth rate (+), public and private investment in automation (+), wage (+) (efficiency wage), working time (−), and an exogenous positive rate (in the standard goods sector about 0.2% per year).

- Labour productivity directly affects employment, wage, mark-up and prices (changing unit costs).

- Employment \(\leadsto N_z = \frac{\sigma_z y_{f,c,z} + (1-\sigma_z)y_z}{\lambda_z h_z} \)
Labour productivity and energy efficiency

- Labour productivity (λ) depends on: physical capital growth rate (+), public and private investment in automation (+), wage (+) (efficiency wage), working time (−), and an exogenous positive rate (in the standard goods sector about 0.2% per year).
- Labour productivity directly affects employment, wage, mark-up and prices (changing unit costs).
- Employment $\implies N_z = \frac{\sigma_z y_{fc,z} + (1-\sigma_z) y_z}{\lambda_z h_z}$
- Energy efficiency depends on: public and private specific investments (+), rate of growth of physical capital (+), and relatively price of energy (+).
Labour productivity and energy efficiency

- Labour productivity (λ) depends on: physical capital growth rate (+), public and private investment in automation (+), wage (+) (efficiency wage), working time (−), and an exogenous positive rate (in the standard goods sector about 0.2% per year).

- Labour productivity directly affects employment, wage, mark-up and prices (changing unit costs).

- Employment $\Rightarrow N_z = \frac{\sigma_z y_{f,c,z} + (1-\sigma_z) y_z}{\lambda_z h_z}$

- Energy efficiency depends on: public and private specific investments (+), rate of growth of physical capital (+), and relatively price of energy (+).

- Improvements in energy efficiency become always more difficult = more expensive (decreasing marginal productivity).
Feedback loops

An example
Data and calibration

The model is applied to Italy. Data sources:

Macroeconomic variables (labour and pension income, unemployment benefits, consumption, investment, employment): ISTAT, Conti Nazionali
Population and demographic variables: ISTAT, variabili demografiche
Energy and energy efficiency: Energy Balance Eurostat – EUCO/PRIMES
Emission estimates: ISPRA.
Data and calibration

The model is applied to Italy. Data sources:

- Macroeconomic variables (labour and pension income, unemployment benefits, consumption, investment, employment): ISTAT, Conti Nazionali;
Data and calibration

The model is applied to Italy. Data sources:

- Macroeconomic variables (labour and pension income, unemployment benefits, consumption, investment, employment): ISTAT, Conti Nazionali;

- Population and demographic variables: ISTAT, variabili demografiche;
Data and calibration

The model is applied to Italy. Data sources:

- Macroeconomic variables (labour and pension income, unemployment benefits, consumption, investment, employment): ISTAT, Conti Nazionali;
- Population and demographic variables: ISTAT, variabili demografiche;
- Energy and energy efficiency: Energy Balance Eurostat – EUCO/PRIMES;
- Emission estimates: ISPRA.

Initial year 2010, scenarios 2010-2050
Scenarios

- **Business as usual - BAU**
 Our reference scenario based on current policies on energy, labour market and other socio-economic aspects. For energy and decarbonization it partially replicates PRIMES scenarios, e.g. **EURO30**, while there are differences on GDP estimates.
Scenarios

- **Business as usual - BAU**
 Our reference scenario based on current policies on energy, labour market and other socio-economic aspects). For energy and decarbonization it partially replicates PRIMES scenarios, e.g. **EUCO30**, while there are differences on GDP estimates

- **Green Growth - GG**
 This scenario aims at achieving EU emissions target by supporting energy efficiency, renewable energy expansion and electrification. Policies are defined from the political-economic debate in Italy (e.g. SEN, 2017) and EU (e.g. Clean Energy Package).
Scenarios

▶ **Business as usual - BAU**
Our reference scenario based on current policies on energy, labour market and other socio-economic aspects. For energy and decarbonization it partially replicates PRIMES scenarios, e.g. **EURO30**, while there are differences on GDP estimates.

▶ **Green Growth - GG**
This scenario aims at achieving EU emissions target by supporting energy efficiency, renewable energy expansion and electrification. Policies are defined from the political-economic debate in Italy (e.g. SEN, 2017) and EU (e.g. Clean Energy Package).

▶ **DeGrowth - DG**
This scenario keeps the energy policies defined in **GG** – slightly reducing the resources mobilised – and it includes significant changes on fiscal and social policies (coherent with national and international degrowth movement).
Features of the Scenarios

- 12 policy changes between GG and BAU (on the path of exogenous variables).
Features of the Scenarios

- **12** policy changes between **GG** and **BAU** (on the path of exogenous variables).
- **27** between **BAU** and **DG**.
Features of the Scenarios

- 12 policy changes between GG and BAU (on the path of exogenous variables).
- 27 between BAU and DG.
- Policies in GG include:
 - public and private investment in energy efficiency (households, firms, government);
Features of the Scenarios

- 12 policy changes between GG and BAU (on the path of exogenous variables).
- 27 between BAU and DG.
- Policies in GG include:
 - public and private investment in energy efficiency (households, firms, government);
 - renewable energy capacity development (subsidies and investment);
Features of the Scenarios

- **12** policy changes between GG and BAU (on the path of exogenous variables).
- **27** between BAU and DG.
- Policies in GG include:
 - public and private investment in energy efficiency (households, firms, government);
 - renewable energy capacity development (subsidies and investment);
 - change in the energy mix in favour of electricity;
Features of the Scenarios

- **12** policy changes between **GG** and **BAU** (on the path of exogenous variables).
- **27** between **BAU** and **DG**.
- Policies in **GG** include:
 - public and private investment in *energy efficiency* (households, firms, government);
 - *renewable energy* capacity development (subsidies and investment);
 - change in the energy mix in favour of *electricity*;
 - lower reduction in the government expenditure to GDP ratio (w.r.t. **BAU**).
Degrowth Policies

Policies in DG include:

- working time reduction, about 30% less in 2050 (i.e. annual average reduction by about 1%);
- decreasing labour market flexibility;
- changes in the composition of the demand by households and government in favor of social and local economy;
- increasing average taxation on distributed profits from 42% to 52% in 15 years;
- slightly increase in the government expenditure to GDP ratio, from 21% to 24% (in 2050);
- decline in the public incentives to automation.
- lower decline in the wage to pension ratio from about 70% to 62% vs 53,2% in BAU and GG.
- drop in the propensity to consume.
Degrowth Policies

Policies in DG include:

- working time reduction, about 30\% less in 2050 (i.e. annual average reduction by about 1\%);
- decreasing labour market flexibility;
Degrowth Policies

Policies in DG include:

- working time reduction, about 30% less in 2050 (i.e. annual average reduction by about 1%);
- decreasing labour market flexibility;
- changes in the composition of the demand by households and government in favor of social and local economy;
Degrowth Policies

Policies in DG include:

- **working time reduction**, about 30% less in 2050 (i.e. annual average reduction by about 1%);
- **decreasing labour market flexibility**;
- **changes in the composition of the demand** by households and government in favor of social and local economy;
- increasing average taxation on distributed profits from 42% to 52% in 15 years;
- slightly **increase in the government expenditure to GDP ratio**, from 21% to 24% (in 2050);
Degrowth Policies
Policies in DG include:

▶ **working time reduction**, about 30% less in 2050 (i.e. annual average reduction by about 1%);
▶ **decreasing labour market flexibility**;
▶ **changes in the composition of the demand** by households and government in favor of social and local economy;
▶ **increasing average taxation** on distributed profits from 42% to 52% in 15 years;
▶ **slightly increase in the government expenditure** to GDP ratio, from 21% to 24% (in 2050);
▶ **decline in the public incentives to automation**.
▶ **lower decline** in the wage to pension ratio from about 70% to 62% vs 53, 2% in BAU and GG.
Degrowth Policies

Policies in DG include:

▶ working time reduction, about 30% less in 2050 (i.e. annual average reduction by about 1%);

▶ decreasing labour market flexibility;

▶ changes in the composition of the demand by households and government in favor of social and local economy;

▶ increasing average taxation on distributed profits from 42% to 52% in 15 years;

▶ slightly increase in the government expenditure to GDP ratio, from 21% to 24% (in 2050);

▶ decline in the public incentives to automation.

▶ lower decline in the wage to pension ratio from about 70% to 62% vs 53, 2% in BAU and GG.

▶ drop in the propensity to consume.
CO_2 Emissions (2010=90)

![Graph showing CO_2 emissions over time with lines for Business as Usual, Green Growth, and Degrowth scenarios.](image)
REN share on gross final consumption of energy (%)

Business as Usual
Green Growth
Degrowth

Quota FER su consumi finali di energia (%)
90
71.25
52.5
33.75
15
2010 2016 2022 2028 2034 2040 2046

Time (Year)
Per-capita GDP (2010=100)
Wage differential (standard/local, 2010=100)

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2016</th>
<th>2022</th>
<th>2028</th>
<th>2034</th>
<th>2040</th>
<th>2046</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wage Differential (standard/local)</td>
<td>100</td>
<td>112.5</td>
<td>125</td>
<td>137.5</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time (Year)

Business as Usual
Green Growth
Degrowth
Concluding Remarks

- 2METE aims at analysing the strategic challenges associated to the transition to a sustainable and equitable society.
Concluding Remarks

- **2METE** aims at analysing the strategic challenges associated to the transition to a sustainable and equitable society.

- The *Degrowth* scenario is the only one to succeed in achieving the emissions target together with a decline in unemployment rates and inequality (in terms of income inequality and wage polarization).

- This study is a case to illustrate the potential of ecological macroeconomics to contribute to much-needed innovative strategies for addressing current pressing challenges.

- Our ambition is to build a network to develop knowledge and capacity-building necessary to use ecological macroeconomics to timely advise policy decisions.
Concluding Remarks

- **2METE** aims at analysing the strategic challenges associated to the transition to a sustainable and equitable society.

- The *Degrowth* scenario is the only one to succeed in achieving the emissions target together with a decline in unemployment rates and inequality (in terms of income inequality and wage polarization).

- The **price** for these results is a slight reduction in per-capita income and consumption.
Concluding Remarks

- **2METE** aims at analysing the strategic challenges associated to the transition to a sustainable and equitable society.
- The *Degrowth* scenario is the only one to succeed in achieving the emissions target together with a decline in unemployment rates and inequality (in terms of income inequality and wage polarization).
- The **price** for these results is a slight reduction in per-capita income and consumption.
- This study is a case to illustrate the potential of ecological macroeconomic to contribute to much-needed innovative strategies for addressing current pressing challenges.
Concluding Remarks

- **2METE** aims at analysing the strategic challenges associated to the transition to a sustainable and equitable society.
- The *Degrowth* scenario is the only one to succeed in achieving the emissions target together with a decline in unemployment rates and inequality (in terms of income inequality and wage polarization).
- The **price** for these results is a slight reduction in per-capita income and consumption.
- This study is a case to illustrate the potential of ecological macroeconomics to contribute to much-needed innovative strategies for addressing current pressing challenges.
- Our ambition is to build a network to develop knowledge and capacity-building necessary to use ecological macroeconomics to timely advise policy decisions.
Scenari: CO₂

- **Emissioni di CO₂ (2010=90)**
 - Business as Usual
 - Green Growth
 - Degrowth

- **Emissioni di CO₂ (kton)**
 - Business as Usual
 - Green Growth
 - Degrowth

- **Emissioni di CO₂ pro-capite (ton)**
 - Business as Usual
 - Green Growth
 - Degrowth

- **Intensità emissioni di CO₂ (emissioni di CO₂/PIL, 2015=100)**
 - Business as Usual
 - Green Growth
 - Degrowth
Scenari: Consumi Energetici ed Efficienza

Consumo di energia pro capite (Gw/h)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>23.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>14.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time (Year)

Quota rinnovabili su produzione di energia elettrica (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>83.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>67.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>51.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time (Year)

Consumo lordo di energia (kton)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>180,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>157,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>135,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>112,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>90,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time (Year)

Quota FER su consumi finali di energia (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>71.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>52.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>33.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time (Year)
Scenari: PIL e Investimenti

Pil pro-capite (2010=100)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Degrowth</th>
<th>Green Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>107.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>142.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spesa per investimenti (milioni di euro)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Degrowth</th>
<th>Green Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>200,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>250,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>300,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>350,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>400,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PIL (milioni di euro)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Degrowth</th>
<th>Green Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>1.3 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1.625 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>1.95 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>2.275 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>2.6 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quota investimenti verdi su investimenti totali (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Business as Usual</th>
<th>Degrowth</th>
<th>Green Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scenari: Mercato del Lavoro

Tasso di disoccupazione (%)

- Business as Usual
- Green Growth
- Degrowth

Salario medio annuale (migliaia di euro)

- Business as Usual
- Green Growth
- Degrowth

Produttività media del lavoro (2010=100)

- Business as Usual
- Green Growth
- Degrowth

Salario orario medio (euro)

- Business as Usual
- Green Growth
- Degrowth
Scenari: Distribuzione del reddito

Quota profitti distribuiti su PIL (%)

Quota salari (reddito da lavoro/PIL) (%)

Quota settore locale (%)
Scenari: Settore Pubblico

Saldo del bilancio pubblico (milioni di euro)

<table>
<thead>
<tr>
<th>Anno</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>-45,000</td>
<td>0</td>
<td>-70,000</td>
</tr>
<tr>
<td>2016</td>
<td>-20,000</td>
<td>-1.75</td>
<td>-3</td>
</tr>
<tr>
<td>2022</td>
<td>5,000</td>
<td>-0.5</td>
<td>147.5</td>
</tr>
<tr>
<td>2028</td>
<td>30,000</td>
<td>0.75</td>
<td>161.25</td>
</tr>
<tr>
<td>2034</td>
<td>410,000</td>
<td>1.75</td>
<td>175</td>
</tr>
<tr>
<td>2040</td>
<td>455,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>500,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spesa pubblica per acquisto di beni e servizi (milioni di euro)

<table>
<thead>
<tr>
<th>Anno</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>320,000</td>
<td>0</td>
<td>-1.75</td>
</tr>
<tr>
<td>2016</td>
<td>365,000</td>
<td>-0.5</td>
<td>-3</td>
</tr>
<tr>
<td>2022</td>
<td>410,000</td>
<td>-1.75</td>
<td>147.5</td>
</tr>
<tr>
<td>2028</td>
<td>455,000</td>
<td>-0.75</td>
<td>161.25</td>
</tr>
<tr>
<td>2034</td>
<td>500,000</td>
<td>-0.25</td>
<td>175</td>
</tr>
<tr>
<td>2040</td>
<td>555,000</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>610,000</td>
<td>-0.01</td>
<td></td>
</tr>
</tbody>
</table>

Rapporto deficit PIL (%)

<table>
<thead>
<tr>
<th>Anno</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>-3</td>
<td>-1.75</td>
<td>-3</td>
</tr>
<tr>
<td>2016</td>
<td>-1.75</td>
<td>-0.5</td>
<td>-3</td>
</tr>
<tr>
<td>2022</td>
<td>0.75</td>
<td>-1.75</td>
<td>147.5</td>
</tr>
<tr>
<td>2028</td>
<td>2</td>
<td>0.75</td>
<td>161.25</td>
</tr>
<tr>
<td>2034</td>
<td>1.5</td>
<td>1.75</td>
<td>175</td>
</tr>
<tr>
<td>2040</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>2.5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Rapporto debito PIL (%)

<table>
<thead>
<tr>
<th>Anno</th>
<th>Business as Usual</th>
<th>Green Growth</th>
<th>Degrowth</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>120</td>
<td>133.75</td>
<td>147.5</td>
</tr>
<tr>
<td>2016</td>
<td>133.75</td>
<td>147.5</td>
<td>175</td>
</tr>
<tr>
<td>2022</td>
<td>147.5</td>
<td>161.25</td>
<td>175</td>
</tr>
<tr>
<td>2028</td>
<td>161.25</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>2034</td>
<td>175</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>2040</td>
<td>175</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>2046</td>
<td>175</td>
<td>175</td>
<td></td>
</tr>
</tbody>
</table>